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Abstract: We consider congestion that is caused by irregular occurrences such as traffic accidents, 
disabled vehicles, adverse weather conditions, spilled loads and hazardous materials. Due to these 
unexpected events, travel times on the roadways are uncertain. In this paper, we present stochastic 
models for traffic flow that incorporates uncertain conditions. These models include queueing systems in 
which customers experience service interruptions from time to time. When a traffic incident happens, 
either all lanes or part of a lane is closed to the traffic.  As such, we model these interruptions either as 
complete service disruptions where none of the servers work or partial failures where servers work at a 
reduced service rate. Additionally, the affect of congestion on the traffic flow is also considered. These 
models are then utilized in estimating the travel times. We present traffic simulation results to show the 
validity of stochastic models in travel time estimation. 
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1. INTRODUCTION 

Due to increased population, economic growth, changes in 
the lifestyles (employees living far from their workplace), 
etc., the demand for transportation has increased 
exponentially. However, improvements in infrastructure have 
not kept up with this trend, because prohibitive investment 
costs and environmental concerns make expansion of current 
highway systems difficult. Increasing traffic flow on existing 
roadways inevitably results in a rise in congestion.  
Congestion leads to delays, decreasing flow, higher fuel 
consumption and has negative environmental effects. The 
cost of total delay in rural and urban areas is estimated by the 
USDOT to be around $1 trillion per year (National 
Conference 2002). Although congestion during peak hours is 
expected, congestions at other times are caused by irregular 
occurrences.  This nonrecurrent congestion may be due to 
traffic accidents, disabled vehicles, natural causes such as 
adverse weather conditions, and spilled loads and hazardous 
materials. Well over half of nonrecurring traffic delay in 
urban areas and almost 100% in rural areas are attributed to 
such incidents. An “incident” is defined here as any 
occurrence that affects capacity of the roadway (Skabardonis 
et al. (1998)). These incidents might also cause other 
incidents when response to the initial incident is not fast 
enough or if the traffic flow is not managed well. USDOT 
estimates that the crashes that result from other incidents 
make up 14-18% of all accidents. There is close to $200 
billion per year in economic loss due to accidents and 
fatalities (National Conference 2002). In addition, supply 
chain disruption as a result of incidents decrease overall 
economic productivity. 

Travel time on the roadways is uncertain as a result of these 
unexpected events. We have shown that even a short lived 
traffic interruption would have significant effect on travel 
times; in addition, travel time variability also increases 
(Baykal-Gursoy and Xiao (2004), Baykal-Gursoy and Duan 
(2006)). On the other hand, this high variability feeds 
congestion since drivers cannot make informed decisions on 
their route selection. Providing reliable travel time estimates, 
by monitoring the impact of incidents continuously, in 
combination with effective incident management can 
decrease congestion, secondary crashes, improve roadway 
safety and decrease traffic delays. Travel time estimation is 
also crucial in the field of evacuation, considering the issues 
such as how to evacuate and move people, and how to move 
traffic in major cities and on interstate highways, during an 
emergency.   

Fig.1. Traffic Flow Interrupted by an Incident 

 

We survey the traffic flow modeling literature in the next 
section. In section 3, we introduce the stochastic queueing 
model of traffic flow interrupted by incidents. We present a 
new approach in section 4 that combines both effects of 
recurrent and nonrecurrent congestion on traffic flow. 
Finally, we discuss future research in section 5. 



 
 

     

 

2. TRAFFIC FLOW MODELING 

2.1  Classical Theory 

Researchers from widely varying disciplines have been 
paying more and more attention to modeling vehicular travel 
in order to improve the efficiency of current highway 
systems. Classical traffic models are mostly based on the 
treatment of interacting vehicles, their statistical distribution, 
or their average velocity and density as a function of time and 
space.  Main modeling approaches can be classified as 
microscopic (particle-based), mesoscopic (gas-kinetic), and 
macroscopic (fluid-dynamic, deterministic queue) (see 
Helbing (2001)).  
 
Microscopic approach was developed based on driver’s 
acceleration and deceleration behaviors due to the interaction 
of vehicles nearby, and called as the car-following model 
(Richards (1956), Gazis et al. (1959, 1961). Newell (1961) 
introduced an optimal velocity model by considering a 
distance-dependent velocity to reflect the safety restriction. 
Recently, Helbing et al. (1999) proposed an intelligent driver 
model, taking all the aspects into account for microscopic 
traffic modeling such as relative velocity and safe driving 
distance. 
 
Macroscopic traffic theory explains the traffic behavior in 
terms of average parameters, such as average velocity and 
average traffic density, based on continuity flow equation, in 
contrast to microscopic traffic modeling. Lighthill and 
Whitham (1955) developed the so-called L-W model on the 
assumption that there is no interruption to the traffic system 
and they obtained the fundamental diagram. Based on the 
continuity equation, Whitham (1974) derived the nonlinear 
wave equation for the propagation kinetic wave and 
developed the basis of shock wave theory. Whitham (1974) 
presented the Burgers equation by introducing a diffusion 
term into wave equation based on the relationship between 
velocity and density. Kuhne (1987) introduced a viscosity 
term in the Burgers equation for the negative drivers’ reaction 
to the gradient of traffic flow and a Navier-Stokes velocity 
equation was obtained. Payne (1971) transformed 
microscopic variables to macroscopic scale and obtained the 
Payne’s velocity equation, which described the reaction of 
individual vehicles to the surroundings and adaptation of 
individual velocity to the equilibrium velocity.  
 
In the mesoscopic approach, driving vehicles are treated as 
the interacting particles in gas environment. By the continuity 
equation in phase space, Prigogine and Andrews (1960) 
modeled the acceleration and overtaking behaviors and 
obtained the critical density of the phase transition from free 
flow to congestion (see also Prigogine and Herman (1971)). 
Paveri-Fontana (1975) improved this model by the 
introduction of diversity of driver types. Helbing (1995) 
included a term for adaptation to the road condition and his 
approximation managed to explain the increase in velocity 
variance before a phase transition.  
 

Some other authors considered congestion around planned 
road work and incidents. Gas-kinetic models are introduced 
to describe the behaviors at bottleneck areas by Shvetsov and 
Helbing (1999) and Kerner (2004). Redner et al. (1994) 
introduced the ballistic agglomeration to model one-lane 
traffic flow and clustering. Lia et al. (2008) developed a 
traffic control plan based on empirical data, the Dynamic 
Late Lane Merge System (DLLMS), to improve traffic flow 
volume and solve potential traffic congestion problems close 
to work zones.  
 
Kuhne et al. (2002) and Mahnke et al. (2005) developed a 
stochastic model  to describe the traffic behavior and the 
general master equation was constructed. Combining Markov 
process and optimal velocity model, they concluded that the 
formation of traffic congestions was due to stochastic 
perturbation and dissolution of cluster depended on the 
cluster size. In analogy to nucleation mechanism, they 
developed a multi-cluster model on one-lane circular road.  
 
Helbing (2003) proposed a deterministic queueing model for 
traffic network by dividing the road into free road and 
congested sections. He estimated the average travelling time 
and congestion pattern, assuming a fundamental diagram 
with linear free and congestion branches. Lammer et al 
(2008a) introduced a model to anticipate the queueing 
process at the traffic lights and estimate the waiting time. 
Based on different evolutions of queue length at green, 
yellow and red lights, they derived the hybrid dynamical 
equations to obtain the required green time to clear the queue. 
Lammer and Helbing (2008b) proposed a self-organized 
traffic-light control at intersections with live data input that 
minimizes the total waiting time.  

2.2 Stochastic Queueing Models 

The arrival process in roadway traffic is modeled as a singly 
arriving Poisson process (Darroch et al. (1964), Tanner 
(1953)), and as platoons to represent the behavior of the 
vehicles moving between traffic signals (Alfa and Neuts 
(1995), Daganzo (1994), Dunne (1967), Lehoczky (1972)). 
Daganzo (1994) presented a cell transmission model, 
representing traffic on a highway with a single entrance and 
exit, which can be used to predict changes in the traffic 
pattern over time and space. Initially, queuing analysis has 
been mainly utilized for performance evaluation using 
deterministic (fluid-dynamic) models (May and Keller 
(1967a,b), Newell (1971)), and synchronization of traffic-
lights (Newell (1965)).  Stochastic queues were studied by 
Cheah and Smith (1994) that explored the generality and 
usefulness of finite server queuing models with state 
dependent service rate (traveling speed) for modeling 
pedestrian traffic flows. As an extension, Jain and Smith 
(1997) used such queues for modeling and analyzing 
vehicular traffic flow on a roadway segment that can 
accommodate a finite number of vehicles. In the Jain and 
Smith model, arrivals are assumed to follow Poisson process 
(M), travel times are assumed to be generally (G) distributed 
random variables, and if the link is full, new arrivals should 
leave and find alternate paths. Consider vehicles traveling on 
a link as shown in Fig. 2.  



 
 

     

 

 
 
Fig.2: A Two-Lane Roadway Link 
 
The space occupied by an individual vehicle on  
the road segment can be considered as one queuing “server”, 
which starts service as soon as a vehicle joins the link and 
carries the “service” (the act of traveling) until the end of the 
link is reached. A “server” in this context is the moving albeit 
virtual vehicle-space including the safe distance to the 
vehicle in front. Thus, the maximum number of vehicles that 
can be accommodated on the link provides the number of 
servers in the model. Although there are several different 
types of vehicles utilizing the roadway, in Jain and Smith 
they are all assumed to be identical and considered as a 
passenger car equivalent. In practice, the service rate 
(traveling speed) is assumed to be a decreasing function of 
the number of the vehicles on the link to represent the 
congestion caused by the traffic volume. Such a queue is 
called an M/G/C/C model with the first M denoting the 
Poisson arrival process, G representing the general service 
times and finally C denoting both the number of servers and 
roadway capacity. 
 
Heideman (1996) used M/M/1 where the second M 
represents the exponentially distributed service times, and 
M/G/1 queues to model uninterrupted traffic flows. Note that 
in all the queuing models, both deterministic and stochastic, 
the link is considered as a point queue (or vertical queue, see 
Daganzo (1997)).  Rakha and Zhang (2005) show the 
consistency of the total delay and total travel time estimates 
in the gas-kinetic and deterministic queuing models. While in 
the multi-server case, a link is separated into cells, contrary to 
the cell transmission model; there is no interdependence 
between the service times. However, we emphasize that these 
models have been shown to be effective in representing 
traffic flow. Van Woensel and Vandaele (2006a) and Van 
Woensel et al. (2006b) validate the use of queueing models 
via empirical data and simulation, respectively. They 
conclude that M/G/1 queueing models are the best models to 
describe normal traffic flow on a highway, while state-
dependent GI/G/m queues were more realistic for the 
congested traffic. Heidemann (2001) studied the transient 
behavior of M/M/1 queues to analyze non-stationary traffic 
flow.  Vandaele et al. (2000) also used M/M/1 and M/G/1 
queues to model traffic flow. Although some of these 
queuing models consider congestion, they all ignore the 
impact of random incidents on traffic flow. 
 

3. MODELING TRAFFIC FLOW INTERRUPTED BY 
INCIDENTS 

Consider vehicles traveling on a roadway link, as shown in 
Fig. 2, which is subject to traffic incidents. During an 
incident, traffic deteriorates such that both number of servers 
and the service rate of all servers decrease. Once an incident 

occurs, the incident management system sends a traffic 
restoration unit to clear the incident. The number of servers 
and the service rate of all servers are restored to their normal 
level when the incident is resolved. The negative impact of 
incident involves both congestion and reduction of road 
capacity. In this study, a lower service rate 0μ′ ≥ , affecting 
every server will be used to represent the impact of 
congestion caused by incidents.  The type of service system 
with batch interruptions is also considered as a Markov 
modulated service mechanism. Note that, the concepts in this 
paper also cover, the M/M/1 queuing model considered in 
Heidemann (1996, 2001) and Vandaele et al. (2000).  

Consider a queue with C servers working at free speed 
service rate μ, subject to random interruptions of 
exponentially distributed durations. During interruptions, the 
free speed service rates of these C servers drop from μ 
to 0μ′ ≥ . At the clearance of the interruption, the service 
rates are restored to μ. We assume that interruptions arrive 
according to a Poisson process with rate f, and the repair time 
is exponentially distributed with rate r.  The customer arrivals 
are in accordance with a homogeneous Poisson process with 
intensity λ. The service times are assumed to be independent 
and identical exponentially distributed. The interruption and 
customer arrival processes, and the service and repair times 
are all assumed to be mutually independent. We would like to 
emphasize that the Poisson assumption for vehicle arrivals 
(Van Woensel et al. (2006b), Van Woensel and Vandaele 
(2006a)) and exponential interarrival times for the incidents 
(Skabardonis et al. (1997)), are shown to be reasonable. 
Although the exponential service times may not seem 
realistic, in our setting, the total time to traverse a link is not 
going to be exponential. Thus, our model may be considered 
as having a generally distributed service time. 

3.1  Queues with Service Interruptions 

The study of queuing systems with service interruptions has 
received significant attention by researchers in the field. One 
type of service interruption has already been considered in 
the context of “vacation” queues where interruptions only 
happen as soon as the queue becomes empty, or a service is 
completed. In general, queues with server vacations are 
used to model non-preemptive priority systems where 
customers receive service according to their priority level.  
The server continuously serves low priority customers until 
higher priority customers arrive. When a high priority 
customer arrives, the server starts serving the new customer 
upon completion of the service of one, a number of, or all of 
the low priority customers. Thus, in these models only 
complete service breakdowns that happen at the instant of 
service completion are considered. These vacation models in 
steady-state are shown to exhibit the stochastic 
decomposition property.  This fundamental result establishes 
the relationship between a performance measure (system size 
distribution, waiting time distribution, sojourn time 
distribution, etc.) for the queuing system with vacations, and 
the same performance measure for the same queuing system 
without vacations (Yadin and Naor (1963), Cooper (1970), 
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Levy and Yechiali (1975), Fuhrmann and Cooper (1985), 
Shanthikumar (1986), Altiok (1987), Doshi (1990), Chao and 
Zhao (1998)). 

3.2  Queues with Random Service Interruptions 

In the traffic flow models that we consider in this 
research, incidents happen randomly, independent of 
service completions. The literature on queues with this type 
of interruptions is relatively scarce.  White and Christe 
(1958) studied a single server queue with preemptive resume 
discipline, and related such queues to queues with random 
service interruptions. Gaver (1962) and Keilson (1962) also 
studied a single server queue with random interruptions. 
Gaver (1962) obtained the generating functions for the 
stationary waiting time and the number in the system in an 
M/G/1 queue. Avi-Itzhak and Naor (1963) derived the 
expected queue length for M/G/1 queue with server 
breakdown, also see, Halfin (1972), Fischer (1977), and.  
Federgruen and Green (1986, 1988). Mitrany and Avi-Itzhak 
(1968) analyzed M/M/C queue where each server may be 
down independently of the others for an exponential amount 
of time. They obtained an explicit form of the moment 
generating function of the queue size for one-server and two-
server systems, and gave a computational procedure for cases 
with more than two servers. In the above models, servers fail 
independently of each other and failures are complete 
service breakdowns. 

M/G/∞ queue with alternating renewal breakdowns was 
studied in Jayawardene and Kella (1996); who show that the 
decomposition property, a well known property of vacation 
type queues, holds for such queues: the stationary number of 
customers in the system can be interpreted as the sum of the 
state of the corresponding system with no interruptions and 
another nonnegative discrete random variable. 

Considering the case of partial failure,  the M/M/1 system in 
a two-state Markovian environment where the arrival as well 
as the service process are affected, is analyzed via generating 
functions first by Eisen and Tainiter (1963), then by Yechiali 
and Naor (1971), and by Purdue (1973). Such queues, in 
general, in n-state Markovian environments are said to have 
Markovian arrival processes (MAP) and Markovian service 
process (MSP), and might be represented in Kendall notation 
as MAP/MSP/1. Yechiali (1973) considered the general 
MAP/MSP/1 queue. Neuts (1981) studied M/M/1 and briefly 
M/M/C queues in a random environment using matrix-
geometric computational methods.  O'Cinneide and Purdue 
(1986) analyzed the n-state MAP/MSP/∞ queue, where ∞ 
represents the number of servers as infinite. In infinite server 
queues, customers need not wait because a server is always 
available. For all these queuing models no closed form 
solution was given. Keilson and Servi (1993) studied a matrix 
M/M/∞ system in which both the arrival and service 
processes are Markov modulated. They obtained the 
generating function of the stationary number of customers in 
the system in terms of Kummer functions. A single server 
queue with Markov-modulated arrival and service processes 
is analyzed in (Adan and Kulkarni (2003)) and asymptotic 

results are presented. For the special case of M/M/∞ queue 
with two-state Markov modulated arrival process, they 
showed that the decomposition property holds, and provided 
the explicit solution. 

Baykal-Gürsoy and Xiao (2004) considered the M/M/∞ 
system with the two-state Markov modulated service process, 
e.g., M/MSP/∞ queue. Using the method introduced in 
Keilson and Servi (1993), they proved that this model also 
exhibits a stochastic decomposition property, and gave the 
stationary distribution in closed form as in the following 
theorem.   

Stochastic Decomposition Theorem:  The number of 
vehicles on a link, X, in equilibrium has the form 

    X X Yϕ= +                                                        

where Xϕ  represents the stationary number of vehicles on a 
link in uninterrupted traffic and is Poisson distributed. Y 
represents the additional vehicles on the link as a result of 
traffic incidents. Y is distributed as Poisson random variable 
with truncated beta distributed parameter and it is 
independent of Xϕ . 

 

 

 

 

 

 

 

 

 

 

 

 

In Baykal-Gürsoy and Xiao (2004) and Baykal-Gürsoy and 
Duan (2007), the expected value and variance of X is 
obtained, it is shown that ( ) ( )Var X E X>  in both the 
complete and partial failure cases, while for uninterrupted 
traffic, variance is equal to its expected value. Thus, we see 
that variability of traffic flow increases under incidents. We 
should also note that the Poisson process where its parameter 
is randomized by truncated beta is more clustered than a 

Figure 3: Probability mass function of the 
stationary number in the system. 
Vertical axis gives the probability of having k 
vehicles on a link. 



 
 

     

 

regular Poisson process, which is completely random.  The 
probability mass function of X is given in Figure 3 for a 
particular set of parameters, together with the Poisson 
distributed Xϕ .  This figure clearly shows the thick tail 
characteristic of the stationary number of vehicles on a link. 
Although the probability of having 100 vehicles in the 
uninterrupted traffic is almost zero and on the average there 
are 25 vehicles on the link, under incidents this probability 
increases to considerable level.  

For the infinite server queue with a two-state service 
mechanism, Jayawardene and Kella (1996) in the case of 
complete breakdown, and Baykal-Gürsoy and Xiao (2004) 
also in the case of partial failure, are the first papers showing 
the validity of the decomposition property. The latter paper 
has created a renewed interest in infinite server queues in 
Markovian environment (D’Auria (2005, 2007), Yechiali 
(2007), Whitt and Pang (2008)). 

Baykal-Gürsoy and Duan (2006) consider the queue with 
multiple classes of interruptions classified according to their 
severity level, level n being the highest level.  Service rate of 
levels are given as , ,1 nμ μK , and they are ordered as the n-th 
level service rate the lowest, while 1-st level service rate the 
highest.  They show the following result for the M/M/C 
queue in a general n-failure state service environment. 

Proposition 1: For the n-state M/MSP/C queue, the stability 
condition is, 
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On the other hand, closed form solutions can be obtained for 
the case of complete service breakdowns such as stopping for 
traffic lights.  Because breakdowns sometimes happen during 
the service time of customers, the service completion time, 
i.e., dwell time on a link, may not remain exponential.  So, 
we can say that the system we are solving is an M/G/C queue 
with a special service structure. Since there is very little 
known about M/G/C queues, the closed form solutions 
obtained in Baykal-Gürsoy, Xiao and Ozbay (2009) and 
Baykal-Gürsoy and Duan (2006) provide a good basis for 
M/G/C queueing analysis. 

3.3 Completion Times 

Completion time represents the total travel time on a link. 
When there is no server failure, completion time is exactly 
equal to the service time or the travel time without 
interruptions. But in the case of partial failures or 
breakdowns, completion time expands to include extra 
service needed to complete the travel following a failure. 

Using Little’s formula we can obtain the expected travel 
times from the expected number of vehicles in the system. 
Furthermore, Baykal-Gürsoy and Duan (2008) have obtained 
generating function of the completion time for M/M/∞ 
system with partial failures (incidents). Thus, whole 
distributional information of completion time, including its 
mean and variance, can be computed. 

4. COMBINED TRAFFIC FLOW MODELING UNDER 
RECURRENT AND NON-RECURRENT CONGESTION  

A modified M/MSP/C/C queuing model is used to model 
traffic flow subject to both incidents and congestion. The 
following diagram is the state transition diagram for such a 
queuing system.  

The two dimensional stochastic process {X(t), U(t)} describes 
the state of the system at time t, where X(t) is the number of 
customers in the system, and U(t) is the status of the system 
at time t. If at time t, the system is experiencing an 
interruption, then U(t) is equal to F (failure); otherwise, U(t) 
is N (normal).  The system is said to be in state (i, F), if there 
are i customers in the system which is experiencing an 
interruption, while the system is said to be in state (i, N), if 
there are i customers in the system which is functioning 
normally.  

 

Figure 3: State Transition Diagram for modified 
M/MSP/C/C Model 

In this system, we use the exponential congestion factor Ai to 
modify the M/MSP/C/C queuing model with  
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Here, Vn is the vehicle speed based on free speed Vfreewhen 
there are totally n vehicles on the road link given by, 
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For detailed explanation about exponential congestion model, 
please refer to Jain and Smith (1997).  



 
 

     

 

Table 1: Comparison of analytical models with simulation 

Table 1 presents the expected travel times for the incident 
only model of (Baykal-Gürsoy et al. 2009) and the combined 
model described in this section, together with the traffic 
simulation results. The relative errors between the simulation 
and analytic models are given inside the parenthesis in the 
last two columns. We use INTEGRATIONTM to simulate a 
link with travel speed at full capacity v = 57.5 km/hr (65 
miles/hr). Note that INTEGRATIONTM treats the arrival 
process as fluid, thus generating λ vehicles per hour 
deterministically.  We consider various arrival rates and link 
lengths on a two-lane roadway where minor incidents 
happen. Minor incidents take on the average of 7min. to clear 
(Skabardonis et al. (1997)).  They report 0.5 incidents per 
hour for a one kilometer roadway.  The values for f and r are 
chosen accordingly.  For each setting, we run the simulation 
to obtain average travel times for 100 replications and each 
replication simulates a 12000-second period. Under 
congestion, each replication takes 5 minutes, thus each 
scenario takes more than four hours. This is very time-
consuming compared to the analytical model. We would like 
to emphasize that in the simulation model as in real life, the 
service times are also neither independent nor exponential.  
The incident process is the only random process in the 
simulations.  Also, here we take μ’=μ/14.  

From this set of results, we can conclude that, the incident 
only model will work well under light traffic situation such as 
most highway traffic, and combined model will usually be 
effective under heavy traffic situation, such as city traffic. 

5 CONCLUSIONS 

In this paper, we have introduced stochastic queueing models 
for traffic flow interrupted by incidents. We are currently 
investigating the use of more general service time 
distributions. We plan to validate our models with empirical 
data. Empirical validation of our models is currently not 
possible because real-time queuing and delay data due to 
accidents are not readily available.  Since accidents are 
random events, it is almost impossible to predict their 
location and time for real-time data collection. However, we 
are investigating various approaches for validation. 
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